

«Основы производства радиоактивных изотопов»

Лекция 2. Общие физико-химические свойства радиоактивных соединений.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

Естественные природные радиоактивные ряды

Изотопный эффект

Изотопный эффект – проявление различий свойств химических веществ, отличающихся по составу изотопов.

Изотопный эффект зависит от трех факторов:

- MMI (mass-moment of inertia) отражает вклад в изотопный эффект энергии поступательного движения и вращения молекулы или ее части.
- ZPE (zero-point energy) отражает вклад в изотопный эффект энергии нулевых колебаний изотопных форм для исходной молекулы.
- EXC (excited vibrational states) отражает вклад в изотопный эффект энергии возбужденных колебательных состояний.

Радионуклид /основной нуклид элемента	Отношение масс	
3H/1H	3	
¹¹ C/ ¹² C	0,917	
¹⁴ C/ ¹² C	1,167	
¹⁸ F/ ¹⁹ F	0,947	
³² P/ ³¹ P	1,032	
³³ P/ ³¹ P	1,065	
⁴⁵ Ca/ ⁴⁰ Ca	1,125	
¹²³ / ¹²⁷	0,969	
¹³¹ / ¹²⁷	1,031	
²³⁵ U/ ²³⁸ U	0,987	

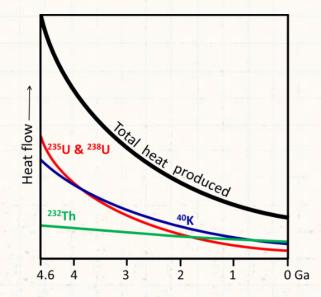
Изотопный эффект

Молекулы, имеющие разный изотопный состав, отличаются массой. Это отражается на химических и физических свойствах вещества. Например,

 1 H₂O (обычная вода) 2 H₂O (тяжелая вода)

Температура плавления Температура кипения Плотность при 25°C 0°С 100°С 0,997 г/см³ 3,8°C 101,4°C 1,104 г/см³

Различие свойств молекул с разным изотопным составом называется изотопным эффектом (ИЭ). Так как отношение масс изотопов уменьшается с увеличением атомной массы элементов, ИЭ наиболее велики для изотопов легких элементов.

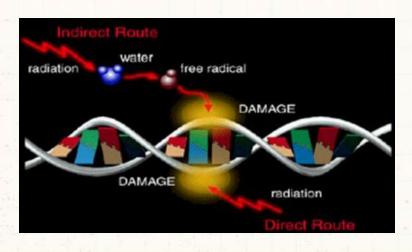

- Термодинамический ИЭ (ТИЭ) отражает различие в константах равновесия.
- Кинетический ИЭ (КИЭ) отражает различие в скоростях процессов (скорости реакции). $\frac{\text{HDS} + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{S} + \text{HDO} }{\text{HDO}}$

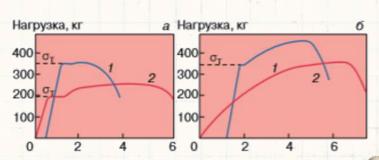
Тепловыделение

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial z^2}$$

$$u(z, t) = T_0 \frac{2}{\sqrt{\pi}} \int_0^{\frac{z}{2\sqrt{a^2t}}} e^{-\alpha^2} d\alpha.$$

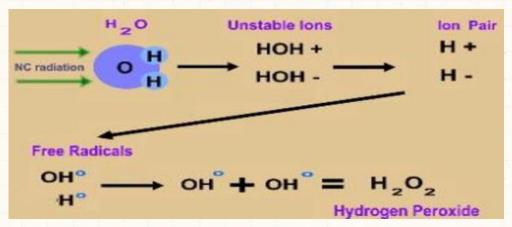
$$\left. \frac{\partial u}{\partial z} \right|_{z=0} = \frac{T_0}{\sqrt{\pi} \sqrt{a^2 t}} e^{-\frac{z^2}{4a^2 t}} = \frac{T_0}{\sqrt{\pi} \sqrt{a^2 t}}.$$

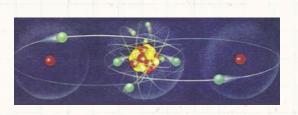

Число нейтронов (N)


$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial z^2} + f \qquad \left(f = \frac{A}{c\rho} \right),$$

$$u(z) = \begin{cases} \frac{A}{k} \left(Hz - \frac{z^2}{2} \right), & 0 \leq z \leq H, \\ \frac{A}{k} \frac{H^2}{2}, & z \geqslant H, \end{cases}$$

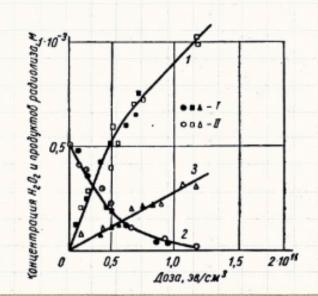
Влияние ионизирующего излучения приводит к.


- **изменению структуры кристаллической решётки** (дефекты, дислокации);
- **радиолизу** разрушению химических связей под действием излучения (например, разложение воды на водород и кислород);
- изменению окраски кристаллов (появление цветовых центров);
- разрушению органических веществ или образованию новых фаз в неорганических соединениях.



Кривые напряжение-деформация для облученных (1) и необлученных (2) образцов железа (а) и никеля (б). Доза облучения 1,1 10²⁰ нейтрон/см².

Радиолиз и радиационная деструкция



H-O-H → H⁺ + OH⁻ (ионизация)

$H-O-H \to H^0+OH^0$ (образование свободных радикалов)

$$H_2O \xrightarrow{hv} H_2O^+ + e^ H_2O \xrightarrow{hv} H_2O* \rightarrow H \cdot + HO \cdot$$
 $H_2O* \rightarrow H_2 + O \cdot$
 $H_2O^+ + H_2O \rightarrow H_3O^+ + HO \cdot$
 $e^- + H_2O* \rightarrow H_2O^- \rightarrow H \cdot + OH^ HO \cdot + HO \cdot \rightarrow H_2O_2$
 $H_2O_2 + HO \cdot \rightarrow HO_2 \cdot + H_2O$
И ДР.

Влияние ЛПЭ на величины начальных выходов продуктов радиолиза нейтральной воды (частица/100 эВ) при 298 К

лпэ,	G(е _{гидр})	G(H)	G(OH)	G(H2)	G(H ₂ O ₂)	G(HO ₂)
МэВ/см						
30	3, 00	0, 65	2, 95	0, 45	0, 80	0, 002
180	1, 3	-	1, 3	0, 63	0, 72	0, 03
400	0, 64	0, 35	0, 68	1, 08	1, 03	0, 05
680	0, 72	0, 42	0, 72	0, 96	1, 00	0, 05
1190	0, 42	0, 27	0, 40	1, 11	1, 08	0, 07
3200	-	-	0, 2	1, 2	0, 90	0, 2
13700	-	-	<0,05	1, 45	0, 82	0, 27

Влияние температуры на начальные выходы продуктов гаммарациолиза нейтральной воды (частица/100 эВ)

T, K	G(е _{гидр})	G(H)	G(OH)	G(H ₂ O ₂)	G(H ₂)	G(OH-)	G(H ⁺)
298	3, 00	0, 65	2, 95	0, 80	0, 45	0, 60	3, 60
323	3, 07	0, 65	3, 06	0, 78	0, 45	0, 66	3, 73
373	3, 17	0, 76	3, 37	0, 73	0, 45	0, 93	4, 10
423	3, 49	0, 78	3, 77	0, 70	¦0, 45	1, 11	4, 60
473	3, 91	0, 88	4, 37	0, 66	0, 45	1, 43	5, 34
523	4, 41	1, 04	5, 13	0, 61	0, 45	1, 85	6, 26

Все молекулы с измененным изотопным составом делят на две категории.

1. Изотопно-замещённые

14CH4

CH₃-14COOH кислота

¹⁴CH₃-COOH ²H-CH₂-CH₂-COOH (^{14}C) метан $(1-^{14}C)$ уксусная $(2-^{14}C)$ уксусная $(3-^{2}H_{1})$ пропионовая кислота кислота

2. Изотопно-меченные

Тип	Написание формулы		
Специфично-меченные	СН ₃ С[² Н ₃] [1- ² Н ₃] этан		
Селективно-меченные	[1- ² H]CH ₃ CH ₃ [1- ² H] этан		
Неселективно-меченные	[² H]CH ₃ CH ₃ [² H] этан		
Равномерно-меченные	[U- ² H]CH ₃ CH ₃ [U- ² H] этан		
Обще-меченные	[G- ² H]CH ₃ CH ₃ [G- ² H] этан		
Изотопно-дефицитные	[def - ² H]CH ₃ CH ₃ [def - ² H] этан		

Способы получения радионуклидов

- ▶ выделение из природных объектов (полезные ископаемые).
- > выделение из отработанного ядерного топлива.
- ightharpoonup облучение материалов в ядерном реакторе (например, с получением Mo, I), реакция (n, γ) и др.
- ▶ облучение мишеней на циклотронах потоками заряженных частиц (протоны, дейтроны, более тяжелые ядра), реакции (p,n), (d,n) и др.
- фотоядерные реакции (γ,n), (γ,p) и др.
- ▶ изотопные генераторы (при распаде материнского ядра образуется дочернее, извлекаемое хроматографией или экстракцией).

СПАСИБО ЗА ВНИМАНИЕ!

